Rat cytochromes P450 oxidize 3-aminobenzanthrone, a human metabolite of the carcinogenic environmental pollutant 3-nitrobenzanthrone
نویسندگان
چکیده
3-Aminobenzanthrone (3-ABA) is a human metabolite of carcinogenic 3-nitrobenzanthrone (3-NBA), which occurs in diesel exhaust and air pollution. Understanding which cytochrome P450 (CYP) enzymes are involved in metabolic activation and/or detoxication of this toxicant is important in the assessment of an individual's susceptibility to this substance. The aim of this study was to evaluate the efficiency of rat hepatic CYPs to oxidize 3-ABA and to examine the metabolites formed during such an oxidation. The metabolites formed by CYPs in rat hepatic microsomes were separated by high performance liquid chromatography (HPLC). 3-ABA is oxidized by these enzymes to three metabolites, which were separated by HPLC as distinguish product peaks. Using co-chromatography with synthetic standards, two of them were identified to be oxidative metabolites of 3-ABA, N-hydroxy-3-ABA and 3-NBA. The structure of another 3-ABA metabolite remains to be characterized. To define the role of rat hepatic CYP enzymes in metabolism of 3-ABA, we investigated the modulation of its oxidation using different inducers of CYPs for treatment of rats to enrich the liver microsomes with individual CYPs. Based on these studies, we attribute most of 3-ABA oxidation in rat hepatic microsomes to CYP2B, followed by CYP1A, although a role of other hepatic CYPs cannot be ruled out. Inhibition of 3-ABA oxidation by selective inhibitors of individual CYPs, supported this finding.
منابع مشابه
The environmental pollutant and carcinogen 3-nitrobenzanthrone and its human metabolite 3-aminobenzanthrone are potent inducers of rat hepatic cytochromes P450 1A1 and -1A2 and NAD(P)H:quinone oxidoreductase.
3-Nitrobenzanthrone (3-NBA), a suspected human carcinogen occurring in diesel exhaust and air pollution, and its human metabolite 3-aminobenzanthrone (3-ABA) were investigated for their ability to induce biotransformation enzymes in rat liver and the influence of such induction on DNA adduct formation by the compounds. Rats were treated (i.p.) with 0.4, 4, or 40 mg/kg body weight 3-NBA or 3-ABA...
متن کاملDNA adduct formation and oxidative stress from the carcinogenic urban air pollutant 3-nitrobenzanthrone and its isomer 2-nitrobenzanthrone, in vitro and in vivo.
The carcinogenic vehicle emission product 3-nitrobenzanthrone (3-NBA) is known to rearrange in the atmosphere to the isomer 2-nitrobenzanthrone (2-NBA), which exists in 70-fold higher concentration in ambient air. The genotoxicity of 2-NBA and 3-NBA was studied both in vitro (human cell lines A549 and HepG2) and in vivo (F344 female rats intra-tracheally administered 5 mg/kg body weight of 3-NB...
متن کامل3-Nitrobenzanthrone, a potential human cancer hazard in diesel exhaust and urban air pollution: a review of the evidence.
Epidemiological studies have shown that exposure to diesel exhaust and urban air pollution is associated with an increased risk of lung cancer. 3-Nitrobenzanthrone [3-nitro-7H-benz[de]anthracen-7-one (3-NBA)] is an extremely potent mutagen and suspected human carcinogen identified in diesel exhaust and ambient air particulate matter. The main metabolite of 3-NBA, 3-aminobenzanthrone (3-ABA), wa...
متن کاملMechanisms of Enzyme-Catalyzed Reduction of Two Carcinogenic Nitro-Aromatics, 3-Nitrobenzanthrone and Aristolochic Acid I: Experimental and Theoretical Approaches
UNLABELLED This review summarizes the results found in studies investigating the enzymatic activation of two genotoxic nitro-aromatics, an environmental pollutant and carcinogen 3-nitrobenzanthrone (3-NBA) and a natural plant nephrotoxin and carcinogen aristolochic acid I (AAI), to reactive species forming covalent DNA adducts. Experimental and theoretical approaches determined the reasons why ...
متن کاملOxidation of carcinogenic 2-nitroanisole by rat cytochromes P450 – similarity between human and rat enzymes
2-Nitroanisole (2-NA) is an important industrial pollutant and a potent carcinogen for rodents. Understanding which cytochrome P450 (CYP) enzymes are involved in its metabolism are important to assess an individual's susceptibility to this environmental carcinogen. The aim of this study was to evaluate the efficiency of rat hepatic CYPs to oxidize 2-NA, to examine the metabolites formed during ...
متن کامل